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• Background Silicon (Si) is known to have numerous beneficial effects on plants, alleviating diverse forms 
of abiotic and biotic stress. Research on this topic has accelerated in recent years and revealed multiple effects 
of Si in a range of plant species. Available information regarding the impact of Si on plant defence, growth 
and development is fragmented, discipline-specific, and usually focused on downstream, distal phenomena rather 
than underlying effects. Accordingly, there is a growing need for studies that address fundamental metabolic and 
regulatory processes, thereby allowing greater unification and focus of current research across disciplines.
• Scope and Conclusions Silicon is often regarded as a plant nutritional ‘non-entity’. A suite of factors associated 
with Si have been recently identified, relating to plant chemistry, physiology, gene regulation and interactions with 
other organisms. Research to date has typically focused on the impact of Si application upon plant stress responses. 
However, the fundamental, underlying mechanisms that account for the manifold effects of Si in plant biology 
remain undefined. Here, the known effects of Si in higher plants relating to alleviation of both abiotic and biotic 
stress are briefly reviewed and the potential importance of Si in plant primary metabolism is discussed, highlighting 
the need for a unifying research framework targeting common underlying mechanisms. The traditional approach 
of discipline-specific work on single stressors in individual plant species is currently inadequate. Thus, a holistic 
and comparative approach is proposed to assess the mode of action of Si between plant trait types (e.g. C3, C4 and 
CAM; Si accumulators and non-accumulators) and between biotic and abiotic stressors (pathogens, herbivores, 
drought, salt), considering potential pathways (i.e. primary metabolic processes) highlighted by recent empirical 
evidence. Utilizing genomic, transcriptomic, proteomic and metabolomic approaches in such comparative studies 
will pave the way for unification of the field and a deeper understanding of the role of Si in plants.
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INTRODUCTION

The many benefits of silicon (Si) to plants are now well recog-
nized (Epstein, 2009; Debona et al., 2017). As the eighth most 
abundant element in the universe and second most abundant in 
the Earth’s crust, Si is not lacking in quantity (Epstein, 1999); 
yet plant-available forms of Si can be limiting (Savant et al., 
1997). As early as the 19th century the importance of Si was 
apparent to botanists (de Saussure, 1804; Hall and Morison, 
1906; Guntzer et al., 2012). Despite the fact that Si is now rec-
ognized as a beneficial nutrient (IPNI, 2015), it is deemed to be 
non-essential to plant growth (Richmond and Sussman, 2003).

Recent experimentation has demonstrated that Si exhibits 
extraordinary effects on plant growth and development une-
qualled by any other non-essential plant nutrient, highlight-
ing the current underappreciation of this ubiquitous element 
(Detmann et al., 2012; Van Bockhaven et al., 2015b). In 1969, 
Lewin and Reimann suggested that Si played an important met-
abolic role in living organisms due to its relative abundance in 
nature. Epstein (1994) further argued that Si played a key role 

in plant growth, mechanical strength and resistance to patho-
gens and herbivory, and as such merited greater awareness of 
its role in plant biology. Further, Epstein (2009) pointed out that 
most plants contain substantial amounts of Si, suggesting this 
is unlikely to be a product of stochastic nutrient uptake, just as 
evolutionary processes have selected for uptake of other ele-
mental nutrients, such as potassium (K). Moreover, Si uptake 
by plants can be adaptive, in response to adverse environmental 
conditions, be they abiotic or biotic (Hartley, 2015), and as such 
is not necessarily essential, but arguably fundamental.

Although the essentiality of this element to plants is still 
debated, there have been significant advances in our understand-
ing of the uptake of Si in higher plants. The comprehensive compi-
lation of the Si concentrations within 735 plant species facilitated 
the assessment of a given species’ ability to absorb Si (Hodson 
et al., 2005). The identification of Si transporters in rice (Oryza 
sativa) (Ma et al., 2006) (Fig. 1) and subsequently in a variety of 
other species, including maize (Zea mays) (Mitani et al., 2009), 
barley (Hordeum vulgare) (Chiba et al., 2009), wheat (Triticum 
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aestivum) (Montpetit et al., 2012), horsetail (Equisetum arvense) 
(Grégoire et al., 2012), pumpkin (Cucurbita moschata) (Mitani 
et al., 2011) and soybean (Glycine max) (Deshmukh et al., 2013; 
Deshmukh and Bélanger, 2015; Ma and Yamaji, 2015), has facil-
itated greater knowledge of the uptake and transport of Si within 
plant tissues, as there is significant variation in Si uptake between 
plant species, and indeed between cultivars. Plants are typically 
characterized as hyper-accumulators, accumulators, passive and 
non-accumulating species. Additionally, our awareness of the 
beneficial effects of supplementing plants with soluble forms of 
Si has evolved considerably, particularly in regard to plant resist-
ance to stress (Debona et al., 2017), yet relatively few studies 
have explored whether Si may play an important role in plant 
primary metabolism.

Research into the effects of Si on plant resistance to abiotic 
(Cooke and Leishman, 2016) and biotic (Fauteux et al., 2005; 
Reynolds et al., 2009, 2016) stress has improved our knowledge 
of the impacts of Si application on plants at the molecular (Ma 
and Yamaji, 2015), physiological (Detmann et al., 2012) and eco-
logical (Cooke et al., 2016) levels. Interest in this research topic 
is apparent in the number of recent review articles published 
on the alleviation of plant stress by Si (Cooke and Leishman, 
2016; Coskun et al., 2016; Imtiaz et al., 2016; Reynolds et al., 
2016; Debona et al., 2017; Kim et al., 2017; Luyckx et al., 2017; 
Sakr, 2017; Etesami and Jeong, 2018). Yet none of these draw 
sufficient attention to the potential for Si to interact with fun-
damental plant metabolic processes. Indeed, studies performed 
have typically considered species-specific and focused aspects 

of Si–plant stress interactions. Therefore there is an increas-
ingly important knowledge gap regarding the underlying factors 
associated with the disparate effects of Si. In this review, we 
highlight the gap in our fundamental understanding by briefly 
summarizing the proposed mechanisms by which Si increases 
plant resistance to, and alleviation of, stress, and also review the 
evidence for a role of Si in plant growth and metabolism. While 
individual studies have added to the body of knowledge of the 
broader impacts of Si on plant development and defence, includ-
ing interactions with pathogens and herbivores, the mechanisms 
underpinning these effects remain little understood. We propose 
a broad framework for the study of the effects of Si in plants, and 
highlight how research can progress to achieve a unified under-
standing of the role of Si in plant biology.

MECHANISMS ALLEVIATING ABIOTIC STRESS

The application of Si has been shown to alleviate the nega-
tive effects of numerous abiotic stresses, including salt, water, 
heat, cold, UV-B, heavy metals and mechanical stress (lodg-
ing) (Fig. 1). The recent meta-analysis by Cooke and Leishman 
(2016) on the alleviation of abiotic stress by Si highlighted that 
most studies have focused on single species and single-stress 
models. Still, the authors found overall consistency in responses 
across plant families and stress types, but there was a lack of 
studies which looked to compare effects between species or 
stress types. Several potential mechanisms associated with 
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Fig. 1. A hierarchical summary of the major distal effects of silicon (Si) on abiotic and biotic plant stresses and some of the progressively more fundamental prox-
imate and underlying phenomena associated with stress alleviation. Effects on the transcriptome highlight examples of genes (associated with metabolic processes 
indicated) with altered transcription in response to Si (e.g. regulation of TaAPX, a gene involved in oxidation metabolism, has been shown to be altered by Si). 
Identified silicon transporter genes essential for silicon uptake in plants are also shown (Lsi1, Lsi2, Lsi6). Solid lines show linkages for which there is empirical 

support and dashed lines show potential links or interactions.
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stress alleviation in higher plants have been identified: increased 
structural reinforcement (Meunier et al., 2017), altered photo-
synthetic rate (Perez et al., 2013; Mihalicová Malcovská et al., 
2014; Sanglard et al., 2014; Rahman et al., 2015; Kang et al., 
2016), changes in stomatal conductance (Hattori et al., 2005) 
and enhanced water use efficiency (Kurdali and Al-Chammaa, 
2013). Other possible mechanisms may also include osmotic 
adjustments through increased water potential and water con-
tent (Gong and Chen, 2012; Ming et al., 2012), reductions in 
oxidative stress (Shen et al., 2010; Ali et al., 2016; Kim et al., 
2017), alterations in mineral uptake and accumulation (Li 
et al., 2015; Pavlovic et al., 2016) and alterations to phytohor-
mone concentrations (Hamayun et al., 2010; Kim et al., 2014) 
(Fig.  1). Concerning the latter, the ethylene phytohormonal 
pathway was recently shown to be implicated in the alleviation 
of salt stress by Si through reduced oxidative damage (Liang 
et al., 2015). Significantly, without ethylene, Si not only failed 
to enhance plant resistance to salt stress but caused an increase 
in oxidative damage and cell death.

Reduction of oxidative damage via decreased production 
of reactive oxygen species (ROS) and/or increased activity of 
antioxidant metabolism appears to play an important role in 
Si-induced abiotic stress alleviation (Zhu et  al., 2004; Liang 
et  al., 2008; Miao et  al., 2010; Ali et  al., 2016; Kim et  al., 
2017). Reactive oxygen species (e.g. O2

−, H2O2) are deriva-
tives of oxygen that are highly reactive and lead to oxida-
tive destruction of cells. The production of these destructive 
molecules increases when plants are exposed to stress. Van 
Bockhaven et al. (2013) suggest the importance of the photo-
respiration component of photosynthesis, alongside oxidation/
antioxidation metabolism, to Si-induced stress tolerance. The 
activity of photorespiration and antioxidative enzymes as well 
as expression of key photorespiratory genes have been linked 
to increased abiotic stress tolerance (Romero-Puertas et  al., 
2007; Rojas et  al., 2012). Moreover, evidence suggests that 
Si-enhanced abiotic stress tolerance is linked to accumulation 
of photorespiratory enzymes (Nwugo and Huerta, 2011). Of 
course Si not only acts on C3 plants (where photorespiration is 
a major component of the photosynthetic processes) (Vaculík 
et al., 2012; Frew et al., 2016a), highlighting that if Si-driven 
photorespiration is a mechanism, it may not necessarily be a 
comprehensively unifying one. Nevertheless, this suggests Si 
may impact primary metabolic processes in higher plants, ra-
ther than its role being confined solely to plant responses to 
external stress.

The role of plant antioxidant metabolism in Si-enhanced abi-
otic stress alleviation has also been shown at the transcriptomic 
level. Ma et al. (2016) found Si reduced H2O2 accumulation and 
increased expression of antioxidant enzyme genes (e.g. TaSOD, 
TaCAT) in wheat under drought stress (Fig. 1). Similarly, using 
targeted transcriptomic profiling, Farooq et al. (2016) observed 
that Si treatment increased the antioxidant capacity of rice plants 
under cadmium stress. Recent experimentation has assessed 
the impact of Si on plants subject to abiotic stress at the level 
of gene expression (Khattab et al., 2014; Liu et al., 2014; Yin 
et al., 2016), and it is now becoming apparent that Si may impact 
primary metabolism in higher plants (Detmann et  al., 2012; 
Sanglard et al., 2014), but use to date of transcriptomics has been 
limited. The use of untargeted transcriptomics and metabolomics 

in future studies is likely to provide important insights into 
underlying mechanisms of stress alleviation.

MECHANISMS ALLEVIATING BIOTIC STRESS

Just as plants must contend with numerous abiotic stress-
ors, so too are they subject to stress from other organisms. 
Supplementing plants with Si has been shown to increase plant 
resistance to mammalian, arthropod and molluscan herbivores, 
fungal and bacterial pathogens, viruses and nematodes (Griffin 
et al., 2015; Rodrigues et al., 2015; Reynolds et al., 2016). One 
of the earliest mechanisms identified and associated with plant 
resistance to pests is the physical defence conferred by Si depo-
sition in plant tissues in the form of phytoliths (largely composed 
of SiO2) (McNaughton and Tarrants, 1983; Katz, 2015). Plants 
translocate Si from the soil solution as monosilicic acid, which 
naturally polymerizes to form phytoliths, which are irrevers-
ibly deposited within the plant (Epstein, 1994; Ma and Yamaji, 
2015). The deposition of phytoliths increases plant rigidity and 
physical toughness (tensile strength) (Massey et al., 2007b) and 
acts as a physical barrier to fungal penetration (Kim et al., 2002). 
Silicon deposition can also wear down the feeding mouthparts, 
or mandibles, of insects (Kvedaras et  al., 2009; Massey and 
Hartley, 2009; Jeer et  al., 2017), reduce plant digestibility to 
both insect and mammalian herbivores (Massey et  al., 2006; 
Massey and Hartley, 2006; Frew et al., 2016b), adversely impact 
herbivores (reducing growth and consumption rates) and also 
reduce predatory behaviour towards prey fed on high-Si diets 
(Ryalls et al., 2017). Importantly, silicification of plant tissue is 
inducible, with more heavily attacked plants typically accumu-
lating more Si (McNaughton and Tarrants, 1983; Massey et al., 
2007a; Hartley and DeGabriel, 2016). Nevertheless, Si also acts 
via mechanisms other than increased physical defences.

Silicon also affects the concentrations of an array of metabo-
lites related to plant defence (Chérif et al., 1992; Rémus-Borel 
et al., 2005; Rahman et al., 2015; Debona et al., 2017), includ-
ing increased defence enzyme activities (e.g. chitinase, β-1,3-
glucanase, phenylalanine ammonia-lyase, polyphenol oxidase), 
in a number of plant–pathogen systems, including necrotrophic, 
biotrophic and hemibiotrophic pathogens (the latter two here-
after referred together as (hemi)biotrophic) (Chérif et al., 1994; 
Liang et al., 2005; Cai et al., 2008). For example, Si-induced 
increases in flavonoids, peroxidases and chitinase have been 
observed in response to some necrotrophic pathogens (Chérif 
et al., 1994; Fortunato et al., 2013).

Interactions between Si and plant defence signal transduction 
pathways, specifically the key phytohormone signalling path-
ways, have recently been investigated. Upon attack or infec-
tion, plants typically produce a complex and specific blend of 
salicylic acid (SA) (generally associated with (hemi)biotrophic 
pathogens), jasmonic acid (JA) (which is associated with necro-
trophic pathogens and insect herbivores) and ethylene (which 
is typically regarded as ‘fine-tuning’ the JA defence response) 
(Glazebrook, 2005; Wu and Baldwin, 2010).

Just as phytohormone signalling is critical to Si-enhanced 
resistance to abiotic stress (Liang et  al., 2015), phytohor-
mones have been shown to be critical to Si-mediated plant 
resistance to biotic stress. By using JA-deficient rice mutants, 
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Ye et al. (2013) identified that the JA pathway was critical for 
Si-enhanced resistance to insect herbivores. This hypothesis 
was further supported by several additional studies investigat-
ing the ability of Si to enhance JA-dependent defence mecha-
nisms, including indirect attraction of insect herbivore natural 
enemies (Kvedaras et al., 2010) by altering the composition of 
the herbivore-induced plant volatiles (HIPVs) produced under 
herbivore attack (Liu et al., 2017). Vivancos et al. (2015) found 
that although Si upregulated SA-dependent defence genes upon 
infection from a biotrophic fungal pathogen, induction of the 
SA pathway was not necessary for Si to enhance resistance. 
Interestingly, Van Bockhaven et al. (2015a) observed that the 
effects of Si in enhancing resistance to a necrotrophic fungal 
pathogen (Cochliobolus miyabeanus) were independent of both 
the JA and SA pathways. Rather, they suggested that Si pre-
vented the pathogen from hijacking the plant ethylene pathway 
such that Si application deactivated pathogen ethylene produc-
tion. Together these findings suggest that Si plays a complex 
but critical role in alleviation of plant biotic stress via effects on 
multiple phytohormone signalling pathways (Fig. 1).

Silicon may also play a role in overcoming the ability of some 
(hemi)biotrophic pathogens and insects to supress plant-induced 
defences. The activation of defence phytohormone signalling is 
stimulated upon plant recognition of a biotic threat. This nor-
mally occurs via recognition of conserved molecular patterns, 
which vary depending on the biotic threat, e.g. pathogen-associ-
ated molecular patterns (PAMPs), damage-associated molecular 
patterns (DAMPs) and herbivore-associated molecular pat-
terns (HAMPs) (Dodds and Rathjen, 2010; Erb et  al., 2012). 
Recognition of these molecules by pattern recognition receptors 
(PRRs), often in concert with recognition of other pathogen/
insect effector proteins, can trigger the plant defence response 
(known as PAMP-triggered immunity [PTI] or effector-triggered 
immunity [ETI]) appropriate to the biotic challenge (Boller and 
Felix, 2009; Erb et al., 2012). Although necrotrophic pathogens 
are not known to produce effector proteins (Glazebrook, 2005), 
both (hemi)biotrophic pathogens and herbivores are known 
to produce effector proteins that are able to suppress PTI and 
ETI, effectively suppressing the plant immune response (Musser 
et al., 2002; Giraldo and Valent, 2013). Vivancos et al. (2015) 
hypothesized that Si deposition in the plant apoplast is likely to 
interfere with (hemi)biotrophic pathogen effectors reaching their 
target sites, thereby preventing the pathogen from inhibiting the 
plant defence response. This hypothesis could also apply to insect 
herbivores, as they produce similar effector proteins (Hogenhout 
and Bos, 2011). Thus, Si potentially overcomes plant defence 
suppression, allowing a full defence response to be initiated upon 
recognition of a biotic threat (Fig. 2). Significantly, in terms of 
seeking some unification of effects across biotic stressors, one of 
the earliest cellular responses following recognition of PAMPs or 
HAMPs is ROS production.

As with Si-induced alleviation of abiotic stress, ROS and 
enhanced antioxidant metabolism is a commonly reported 
mechanism through which Si is proposed to act to alleviate 
biotic stresses (Van Bockhaven et al., 2013). This occurs via 
reduction of oxidative damage to the plant by enhancement of 
antioxidant metabolism and/or ROS-initiated defence responses 
(Domiciano et  al., 2015; Yang et  al., 2017). Generation of 
ROS and antioxidant metabolism have been associated with 
pathogen (bacterial and fungal) infection (Debona et al., 2014; 

Domiciano et al., 2015) and in response to damage from chew-
ing and sucking insects (Han et al., 2016; Yang et al., 2017). 
Formation of ROS can negatively and directly impact biotic 
stressors (Ramputh et  al., 2002); however, ROS have a vari-
ety of signalling roles in various defence signalling pathways 
with phytohormones, including JA and SA (Leon et al., 1995; 
Glazebrook, 2005; Torres, 2010). Furthermore, ROS can also 
activate plant defence genes and the associated accumulation of 
defence metabolites, including phytoalexins and allelochemi-
cals (Thoma et al., 2003).

Van Bockhaven et al. (2013, 2015a, b) suggested that primary 
plant metabolism, specifically photorespiration and the produc-
tion of ROS, plays an important role in the broad-spectrum 
effects of Si on biotic stress alleviation, although these roles 
are currently not clearly defined. These authors also highlighted 
that for diatoms (algal phytoplankton) Si is essential for life 
processes, including DNA replication (Okita and Volcani, 1978; 
Martin-Jézéquel et al., 2000), and that combining knowledge 
on how Si interacts with cellular metabolism in algae and other 
primitive plants may therefore provide important insight into 
the role of Si in angiosperms. The nature of ROS production as 
a by-product of fundamental life processes and the implication 
of an interaction of Si with oxidation/antioxidant metabolism 
in numerous studies relating to both abiotic and biotic plant 
stresses suggest this is a promising avenue of research towards 
determination of the fundamental role(s) of Si in higher plants.

The utilization of transcriptomic techniques such as micro-
arrays alongside more targeted assays such as real-time quanti-
tative PCR (qPCR) are critical in developing an understanding 
of how Si impacts plant gene expression. Fauteux et al. (2006) 
found that pathogen infection upregulated defence genes and 
downregulated primary metabolism genes, but following the 
application of Si downregulated genes were not as severely 
impacted, while they found little evidence to suggest an impact 
of Si without pathogen stress. Similarly, Chain et al. (2009) and 
Van Bockhaven et al. (2015b) found that Si application nearly 
eradicated the effects of pathogen stress on the plant transcrip-
tome. In contrast with studies related to pathogen stress, where 
some transcriptomic work has been reported, limited research 
has evaluated the impact of Si on enhanced plant resistance to 
insect herbivores. Therefore, further studies on the interactions 
of Si with the transcriptome of different plant species varying 
in their Si uptake ability (e.g. accumulators, non-accumulators) 
under different forms of insect herbivory (e.g. chewers, suck-
ers) should provide valuable insight into how Si alters plant 
gene expression in response to insect stressors, and help unify 
this branch of the field with plant pathology.

EFFECTS OF SILICON ON UNSTRESSED PLANTS

The effects of Si on the alleviation of abiotic and biotic stress 
are now well recognized, but it was generally considered that 
Si had little or no effect on plant metabolism in unstressed situ-
ations (Ma, 2004). That view may no longer be empirically 
supported and this has profound implications for the effects 
of Si on plants, given that positive response to Si application 
may not be limited to plants under stress. Rather the direct 
impact of Si extends to more fundamental metabolic processes. 
Fauteux et  al. (2005) found that in the absence of stress Si 
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application altered regulation of only two genes in Arabidopsis 
thaliana. Though this species does not actively accumulate Si 
(Vivancos et al., 2015), beneficial effects of Si in this model 
plant have been demonstrated (Ghanmi et al., 2004; Fauteux 
et al., 2006; Khandekar and Leisner, 2011). Recent pot-based 
experiments on the impact of Si application on sugarcane 
(Saccharum spp. hybrid) growth and defence against an insect 
herbivore revealed significant increases in plant growth even in 
the absence of herbivory (Frew et al., 2016a). In wheat, Chain 
et al. (2009) found that Si amendment affected the regulation 
of 47 genes in unstressed plants, while Brunings et al. (2009) 
reported the altered regulation of 221 genes in unstressed rice 
plants, of which 28 were associated with defence and stress, 
while the remainder were associated with primary metabolic 
processes or had unknown functions. In rice, Van Bockhaven 
et  al. (2015b) found that Si altered the expression of genes 
associated with cell wall biosynthesis and glycolysis, and 
downregulated nitrogen and amino acid metabolism, as well as 
the metabolism of the ethylene, JA and SA defence hormones.

A study by Detmann et al. (2012) explored mechanisms by 
which Si had a positive effect on unstressed rice plants. By 

analysing photosynthetic gas exchange parameters alongside 
transcriptomic and metabolomic profiling, the authors con-
cluded that Si increased photosynthetic efficiency and ultim-
ately altered rice primary metabolism through stimulating 
amino acid remobilization (Fig. 1). Fleck et al. (2011) found 
that Si substantially altered the root anatomy of unstressed 
rice plants as well as the regulation of 265 genes, including a 
25-fold upregulation of a specific protein-encoding gene that, 
it was suggested, may play a central role in the perception of a 
Si signal of an unknown nature. Further to this, Si was recently 
shown to delay leaf senescence by activation of the cytokinin 
pathway in both Si-accumulating and non-accumulating plant 
species (Markovich et al., 2017).

It is important to note that few environments, if any, are com-
pletely stress-free. The very concept of ‘stress’ could be mis-
leading, as even basic metabolic processes can impart stress on 
plants, for example oxidative stress as a by-product of essen-
tial metabolic processes such as photosynthesis or respiration 
(Apel and Hirt, 2004). Consequently, the ability of Si to alle-
viate stress is very likely a fundamental component of plant 
life-processes.
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Fig. 2. Simplified summary of plant recognition of biotic stressors, (hemi)biotrophic pathogens and insect herbivores, and the subsequent cascade of events lead-
ing to plant-induced defence response. Pathogen- and herbivore-associated molecular patterns (PAMPs and HAMPs) are recognized by pattern recognition recep-
tors (PRRs). Reactive oxygen species (ROS) are generated upon recognition of PAMPs and HAMPs. Recognition of PAMPs and HAMPs, in conjunction with 
recognition of other endogenous pathogen/herbivore-produced effectors, leads to PAMP/HAMP-triggered immunity and effector-triggered immunity (ETI), which 
induces phytohormone signalling to produce an induced plant defence response. (Hemi)biotrophic pathogens and insects can produce effectors that suppress ETI, 
inhibiting the plant defence response. Deposition of Si in the apoplast potentially interferes with immunity-repressing effectors reaching their target sites, thereby 

allowing the plant to mount an induced defence response to combat the biotic threat (Vivancos et al., 2015).
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THE ROLE OF SILICON IN PLANT BIOLOGY

Our understanding of the role of Si in plant biology is domi-
nated by the multiple effects of Si on stress alleviation, and 
although some effects of Si on plant metabolism and gene ex-
pression have been demonstrated, the mechanisms whereby 
Si acts on plant growth and development remain ambiguous. 
Thus, we suggest a paradigm shift in the research approach to 
understanding the role of Si in plants. The notion of Si as a 
‘non-essential nutrient’ has been challenged (Takahashi et al., 
1990; Epstein, 1994, 1999, 2009; Cooke and Leishman, 2011). 
It is clear that Si has notable effects on numerous plant species, 
even those not classified as Si accumulators, under different en-
vironmental conditions (Li et al., 2015), highlighting that the 
nature and magnitude of the effects of Si are not necessarily 
concentration-dependent (Katz, 2014). The multiple effects of 
Si, including altered expression of defence enzymes and metab-
olites, increased phytolith deposition, changes in transpiration 
rates, CO2 assimilation and increased activity of antioxidant 
enzymes, all contribute to stress alleviation (Fig.  1). There 
is now increasing evidence that may suggest a critical role 
for Si in plant growth, primary metabolism and development 
(Detmann et al., 2012; Van Bockhaven et al., 2013; Markovich 
et al., 2017), but further research is required.

Looking forward, there are emerging pathways that can facili-
tate our understanding of Si, an element that has a diverse array 
of beneficial effects on plants. The impact of Si nutrition on 
gene regulation and the differential effects observed between 
species have only partially been revealed to date. In some high 
Si-accumulating species, Si could play an important role in plant 
primary metabolism (Van Bockhaven et  al., 2015b). The cur-
rent foundation of knowledge from studies in rice and in non-Si-
accumulating species that respond to Si application, including 
A. thaliana (Fauteux et al., 2006; Markovich et al., 2017) and 
tomato (Solanum lycopersicum) (Ghareeb et al., 2011; Li et al., 
2015), provide a starting point for future mechanistic studies. 
These systems, along with those high Si-accumulators such as 
rice, barley and wheat, should be employed incrementally across 
multiple experiments to evaluate the impacts of Si in unstressed 
situations as well as under single and multiple abiotic and biotic 
stresses. These should focus, in particular, on those primary 
metabolic processes revealed in recent research to potentially 
interact with Si (e.g. oxidation metabolism). As highlighted, 
Si may interact with primary photosynthetic processes (photo-
respiration), but this requires clarification as these interactions 
are likely to differ between C3-, C4- and CAM-type plants due to 
the differential physiological and enzymatic carbon fixation pro-
cesses employed. The form in which Si is delivered to the plant 
may also strongly impact its effects on plant metabolism. The 
delivery mode of Si, in terms of formulation (e.g. calcium sili-
cate, sodium silicate), should be further evaluated with emphasis 
on optimal translocation and accumulation in planta, as uptake 
and concentration at the site of action may prove critical to 
impacts on plant defence and growth. As a parallel priority, it is 
also important to investigate the role of Si in plant community 
structure and its ecological impact on mutualists and plant–plant 
interactions, including allelopathic effects of invasive species.

Appropriately designed, cross-disciplinary, incremental stud-
ies could reveal far-reaching effects on multiple fields, includ-
ing plant pathology, entomology and agronomy, as well as plant 
biochemistry, ecology and evolutionary biology. Consideration 
of the impacts of plant breeding on Si uptake ability and the 
potential impacts on agronomy and agriculture is also worthy 
of note (Simpson et al., 2017), as is the production of transgenic 
plant species with increased Si uptake capacity (i.e. introduc-
tion of Si transporter genes [Lsi1, Lsi2]). Untargeted omics, uti-
lizing multivariate analyses, in parallel with targeted profiling 
of significant markers integral to those primary metabolic pro-
cesses already highlighted (photosynthesis, oxidation), should 
be used purposefully, with initial comparisons of specific plant 
trait groups (Si accumulator and non-accumulator; C3 and C4 
plants), or of specific stresses ((hemi)biotrophic pathogens and 
chewing insect herbivores). Such comparative analyses will 
facilitate interpretation of effects and interactions, but poten-
tially highlight next steps and contribute to elucidation of the 
fundamental role of Si in plant growth and development.

Silicon deposition may interfere with (hemi)biotrophic patho-
gen/herbivore effector proteins that suppress plant ETI (Fig. 2), 
which highlights another potentially unifying mechanism under-
pinning Si-enhanced plant resistance to some biotic stressors 
(Vivancos et  al., 2015), and, considering the close association 
of this process with ROS production and defence phytohormone 
signalling, may also shed light on the ability of Si to alleviate 
abiotic stress. As a first step, this could be addressed using tar-
geted transcriptomics evaluating the regulation of genes associ-
ated with ETI in (hemi)biotrophic pathogen/herbivore-stressed 
plants under high- and low-Si environments. As we have high-
lighted in this article, there is evidence from the last decade that 
Si may have an important, yet undefined, role in plant primary 
metabolism, specifically related to oxidation metabolism, or gen-
eration of ROS, that spans beyond biotic stress alleviation. The 
use of untargeted and targeted omics studies selectively compar-
ing stress types could reveal new insights and confirm whether 
Si does indeed impact primary metabolism. Subsequent meta-
analyses will also prove critical in identifying unifying pathways 
and mechanisms by which Si acts on plant metabolism.

Despite past efforts to raise awareness of the importance of 
Si (Epstein, 1994, 1999, 2009; Cooke and Leishman, 2011), 
coupled with selected recent findings on its role in gene regu-
lation in plant development and defence, many plant scien-
tists remain indifferent to or unaware of the potential roles of 
this interesting and unique element. Therefore, to address this 
future challenge we suggest the thoughtful and focused design 
of multidisciplinary experimentation among collaborators, 
leading to a better understanding of the underpinning role of Si 
in higher plant growth and development, and therefore its abil-
ity to enhance plant resistance to stress.
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